
A. R. P A T E L  AND K. N. FOSWAMI 49 

linear etch pattern might have been formed along with 
edges of imperfect layers deposited during growth. 
The calcite crystals were of rhombohedral habit. The 
growth layers make an angle of about 75 ° with the 
cleavage face. The displacement observed in Fig. 9 
across the cleavage step and the height of the measured 
step are such that  the angle made by the imperfect 
layers with the cleavage face is about 73 ° . 

The question arises as to how far within the body 
of the crystal does such a pattern extend. We have 
obtained an answer to this question by using the 
method adopted by Patel & Tolansky (1957) for 
diamond. A small block of calcite was cleaved out 
and etched on all faces. A remarkable correlation 
appears in the patterns of the faces. These etch 
patterns are shown in Fig. 10 (×22) which is an 
exploded view, showing relation between the faces. 
Distinctive regions exhibiting different degrees of 
attack are seen. In one region the pits are widely 
distributed and in the other linear arrangements of 
densely populated pits are formed. These linear ar- 
rangements reveal the growth stratigraphy of the 
crystal. 

I t  is clear that  the stratigraphical pattern goes right 
through the body of crystal. Indeed, the etch has 
revealed the true history of growth of the calcite. 
The crystal sheets growing layerwise might have 
grown under different conditions. Such sheets of differ- 
ent thicknesses, maintain their individuality through 

the whole crystal block and this accounts for the 
similar etch pattern appearing on the four cleavage 
faces as shown in Fig. 10. 

The implication seems to be that  growth conditions 
(temperature pressure, impurities etc.), whilst effec- 
tively constant for each region differ markedly for 
successive regions. 

I t  might well be that  the growth is controlled by 
two separate rates: 

(1) Sheets with isolated pits might have grown slowly. 
(2) Sheets with densely populated pits have probably 

been deposited fairly rapidly. 
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Simple mosaics are given for the plane groups and the conditions for fitting these on the sur- 
faces of polyhedra are discussed. All the basic polyhedra are considered, and a list is drawn 
up of the various possibilities. Some application to the structure of viruses is suggested. 

Introduct ion 

A mosaic is a two-dimensional array of congruent 
shapes which completely covers the plane without 
overlapping. For this array to belong to one of the 
17 plane groups, it must be invariant to certain sym- 
metry transformations. If the basic shape has no 
symmetry, the shapes must be in the general positions 
of the plane group. 

The simplest possible such shape will give the 
simplest possible mosaic which fully describes the 
plane group. As any antisymmetry or colour-sym- 
metry plane group is isomorphic with one of the plane 

groups, the mosaic for this plane group will be the 
most appropriate for adaptation for all the isomorphic 
groups. 

Belov et al. (1956, 1957, 1958) have given mosaics 
for antisymmetry and colour-symmetry plane groups, 
but these do not all agree with the principles laid down 
above. Thus Belov & Belova (1957) use a mosaic 
isomorphic with Fig. 1 to describe the colour-sym- 
metry groups numbered Ia and I I Ia  in their paper. 
Fig. 1 contains numerous planes of symmetry, which 
do not become planes of true or colour symmetry in 
the diagrams of Belov & Belova. Moreover Fig. 1 is 
not the most appropriate mosaic to use to describe 
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Fig. 1. Mosaic isomorphic with I(a) and III(a) 
of Belov & Belova (1957). 

the s y m m e t r y  group to which it belongs. A better  
mosaic is Fig. 2 :No. 12. 

M o s a i c s  for  the  p l a n e  g r o u p s  

Fig. 2 gives a suggestion for the simplest  possible 
mosaics for the 17 groups. 

Diagrams for Nos. 6, 11 and  14 cannot be obtained 
wi th  a single shape as the basic shape unless the 
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Fig. 3. Alternative mosaics for plane groups 
Nos. 10, 12 and 16. 

symmet ry  of this basic shape is removed. This is done 
in the diagrams by  drawing in a fine line. Al ternat ive  
mosaics are given for plane groups 10, 12 and 16 in 
Fig. 3. The symmet ry  considerations are here satisfied 
where again the finer line removes any  symmet ry  not  
belonging to the plane group. 

P l a n e  g r o u p s  o n  p o l y h e d r a  

In  the plane mosaic each basic shape is surrounded by  
its nearest  neighbours in an exact ly  similar  way. 
I t  is the purpose of this paper  to f ind the possible 
convex polyhedra tha t  can be obtained by  applying 
only the restriction tha t  around each shape the  
nearest  neighbours mus t  be the same as in the plane 
group. Thus in the plane group 16 (Fig. 2), where 
we have six areas around one point,  we can reduce the  
number  to 5 and  similar ly about  l 1 other points and  
obtain the icosahedron Fig. 4 No. (i)(a). Clearly in 

G 
0)o (0~ O)c 

(ti) a ( i i )b ( i i)c 

Fig. 2. Mosaics for the 17 plane groups. Fig. 4. Plane groups Nos. 16 and 17 on icosahedra. 
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this case the nearest neighbour environment is the 
same as in the plane group, but  this would not be so 
for No. 15 Fig. 2. Thus this plane group does not fit 
on to an icosahedron. Similar consideration of the 
plane group No. 17 where twelve shapes surround 
some points leads to the icosahedron Fig. 4 No. (ii)(a). 

The other icosahedra in Fig. 4 are produced from 
the plane groups Nos. 16 and 17 by fit t ing more 
shapes on to each face. This process can be continued 
indefinitely, but  the number of shapes on the icosa- 
hedron is always an integral multiple of 60. 

There are only eight convex polyhedra whose faces 
are equilateral triangles. Figs. 4, 5 and 6 show some 
possible arrangements of the plane groups on these 
polyhedra. The polyhedra which can be formed by 
combining tetrahedra and octahedra are not con- 
sidered separately, as the condition tha t  a plane group 
can fit on both is sufficient for it to fit on any combina- 
tion of these polyhedra. 

I t  is evident tha t  for a plane mosaic to fit on to a 
polyhedron this mosaic must  have a symmetry  axis 
of higher than second order. Thus we only have to 
consider the trigonal, hexagonal and tetragonal plane 
groups. The tetragonal groups :Nos. 10 and 11 are 
able to fit over the surface of a cube, as shown in 
Fig. 7, and can therefore fit over any rectangular 
parallelepiped with integral length edges. The alter- 
native mosaic for the plane group :No. 10 given in 
Fig. 3 is used for Fig. 7 :Nos. (ii)(a), (b), (c), as this 
allows superpositions with a minimum of 12 shapes, 
whereas using No. 10 (Fig. 2) the minimum number 
is 24. This lat ter  possibility is in fact equivalent to 
Fig. 7 :No. (ii)(b). 

(i) a (i)b (i)c 

(i)~ (i)b (i)c 

( i i)a (i i)b (ii) c 

(i i i)a (i i i) b (ii i) c 

Fig. 6. P lane  groups Nos. 16 and  17 on (i) 12-hedron, 
(ii) 14-hedron and  (iii) 16-hedron. 

(i)a (i) b (i)c 

Oi)o (ii)b (ii)~ 

Fig. 7. P lane  groups (i) 11, (ii) 10" (Fig. 3) on cubes. 

(i i)~ (ii) b (ii) c (ii) d 

(iii) a ( i i i )b (i i i)  c (i i i)  d 

(iv) a (iv) b (iv) c (iv) d 

Fig. 5. P lane  groups Nos. 16 and  17 on (i) t e t rahedra ,  (ii) 
t r igonal  d ipyramids ,  (iii) oc tahedra  and  (iv) pentagonal  
d ipyramids .  

(i) (ii) (rio 

(iv) 

Fig. 8. P lane  group (i) 17 on tr igonal  prism, (ii) 17 on te t ragona |  
py ramida l  prism, (Hi) 10" (Fig. 3) on tr igonal  pyramida l  
prism, (iv) 17 on hexagonal  ant ipr ism. 
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Fig. 8 shows the superposition of mosaics on trigonal, 
tetragonal and hexagonal prisms and antiprisms, 
with or without pyramidal ends. 

The polyhedra considered here do not exhaust the 
possibilities, as the class of compound polyhedra has 
been excluded. Table 1 gives a summary of the results. 

The enumeration of the above possibilities was 
suggested by the symmetry of a Chinese hat, of which 
a photograph is given in Fig. 9. Three sets of parallel 

strands are woven at 60 ° to each other, and this 
produces a pattern belonging to the plane group 
No. 17. At one point the number of strands is re- 
stricted to five, and this point, the apex of the hat, 
is therefore a 5-fold axis. This is the first stage in the 
construction of an icosahedron of the type of (ii), 
Fig. 4. 

The plane groups on polyhedra might have applica- 
tion to the structure of viruses. I t  has been shown 

Table 1. A s u m m a r y  of  the results, giving the number of  plane group uni ts  which f i t  on a polyhedron 

P o l y h e d r o n  t y p e  P o i n t  g r o u p  P l a n e  g r o u p  N u m b e r  o f  u n i t s  P o i n t  g r o u p  ( if  n e w )  F i g u r e  

Prisms 
O r t h o r h o m b i c  m m m  10"  [ a : 2  o r  4 222 - -  

l l  2 a ( l m + m n W n l )  i a = 4  o r  8 - -  - -  
12"  a = 4  - -  - -  

T e t r a g o n a l  4 / m m  10"  [ 2, m o d d  2 - -  
a---- / 2, m e v e n  222 

4 422 - -  
4, m o d d  4 2 m  - -  

11 2 a ( 2 m n + n U )  a - ~  4 ,  m e v e n  m m n ~  - -  

8 4 / m m m  - -  

12"  ~ 4, m o d d  m m m  - -  a--~ 
4, m e v e n  4 2 m  

C u b e  m 3 m  10"  12n  9", n o d d  23 7( i i ) (a )  
12(2n)  ~, 2 4 n  2 432 7( i i ) (b) ,  (c) 

11 2 4 n  e, 4 8 n  u 43m 7 (i) 
12"  2 4 n  ~ 23 - -  

T r i g o n a l  6 m 2  17 12n  u + 7 2 m n  - -  8(i)  
H e x a g o n a l  6 / m m m  17 7 2 n  2 + 1 4 4 m n  - -  - -  

2 1 6 n  ~ -t- 1 4 4 m n  - -  - -  

Antiprisms 
T r i g o n a l ,  o c t a h e d r o n  

H e x a g o n a l  

m 3 m  15 2 4 n  ~ m 3  - -  
16"  8n  2 422  - -  
16 2 4 n  u 432 5( i i i ) (b)  
17 16 4 / m m m  5( i i i ) (a )  

4 8 n  ~, 144n  2 - -  5 ( i i i ) (c ) ,  (d) 
1 2 m 2  16* 7 2 n  2 622 - -  

16 2 1 6 n  e 622 - -  
17 1 4 4 n  u, 4 3 2 n  u - -  8( iv)  

Pyramidal prisms 
T e t r a g o n a l  

T r i g o n a l  

Pentagonal 

4 / m m m  17 4 8 n  2 + 9 6 r a n  - -  8(fi) 
1 4 4 n  2 + 9 6 r a n  - -  - -  

6 m 2  10"  6 n  ~" + 1 2 r a n  32 8( i i i )  
12n  ~ + 2 4 r a n  32 - -  

11 12n  ~" + 2 4 r a n  - -  - -  

2 4 n  2 + 2 4 m n  ~ m o d d  3 m  - -  
( m e v e n  - -  - -  

17 3 6 n  ~" Jr 7 2 r a n  - -  - -  

1 0 8 n  ~ -t- 7 2 m n  - -  - -  

1-0m2 17 60n ~ + 120ran - -  - -  
1 8 0 n  ~ + 1 2 0 r a n  - -  - -  

Pyramidal antiprisms 
T e t r a g o n a l  1 6 - h e d r o n  

T r i g o n a l t  
P e n t a g o n a l ,  

i c o s a h e d r o n  

8 m 2  16 4 8 n  ~" 422  6(i i i )  (a)  
16"  144n  ~ 422  
17 9 6 n  ~, 2 8 8 n  9" - -  6 ( i i i ) (b) ,  (c) 

5 m 3 m  16 6 0 n  2 532 4(i)  
16"  180n  ~ 532  - -  
17 120n  ~, 3 6 0 n  2 - -  4( i i )  
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Polyhedron type 

T a b l e  1 (cont.). 

Point  group Piano group Number  of units Point  group (if new) Figure 

Other polyhedra 
Totrahedron 43m 

Trigonal dipyramid 6rn2 

Pentagonal  dipyramid 10m2 

12-hodron 42m 

14-hedron 6m2 

16 12n 2 23 5(i)(a) 
16" 36n 9 23 - -  
17 24n 9-, 72n2 - -  5(i)(b), (c) 
16" 6n 2 32 
16 18n ~ 32 5(ii)(b) 
17 12, 36n 2, 108n 2 - -  5(ii)(a), (c), (d) 
I6" I0n s 52 - -  
16 30n 2 52 5(iv)(b) 
17 20, 60n 2, 180n 2 - -  5(iv)(a), (c), (d) 
16 36n 2 2 6(i)(a) 
16" 108n 2 2 - -  
17 72n~, 216n 2 - -  6(i)(b), (c) 
16 42n 2 32 6(ii)(a) 
I6" 126n 9 32 
I7 84n 2, 252n ~ - -  6(ii)(b), (c) 

l, m and n al~ positive integers. When m occurs in the number  of units of a prism or pyramidal  prism, 
it corresponds to the number  of repeat  units along its length 

* Plane group mosaic as in Fig. 3. 
t Formed from one octahedron and two tetrahedra.  These compound polyhedra are not  considered. 

Fig. 9. A Chinese hat, viewed just  off axis from above. 

t h a t  s o m e  v i r u s e s  h a v e  i c o s a h e d r a l  532 s y m m e t r y ,  
e .g.  b u s h y  s t u n t  v i r u s  (Caspa r ,  1956).  C r i c k  & W a t s o n  
(1956) h a v e  s u g g e s t e d  t h a t  t h e  p r o t e i n  l a y e r  sur -  
r o u n d i n g  t h e  r i b o n u c l e i c  a c i d  c e n t r e  of t h e  v i r u s  is 
m a d e  u p  of a n u m b e r  of i d e n t i c a l  u n i t s  p a c k e d  i n  a 
s y m m e t r i c a l  w a y .  I t  is p l a u s i b l e  t h a t  t h e  n e a r e s t  
n e i g h b o u r  r e s t r i c t i o n  h e r e  i n t r o d u c e d  m a y  be  ap-  
p l i c a b l e  t o  t h e s e  u n i t s  of  t h e  p r o t e i n  shel l .  T h e  shel l  
w o u l d  t h e n  be  a ' p l a n e  g r o u p  o n  a p o l y h e d r o n ' .  

T h a n k s  a r e  d u e  t o  Mrs  J .  N e w t o n  w h o  d r e w  m o s t  
of t h e  d i a g r a m s ,  a n d  t o  t h e  D e p a r t m e n t  of Sc i en t i f i c  
a n d  I n d u s t r i a l  R e s e a r c h  fo r  a r e s e a r c h  g r a n t .  
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